Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Chem ; 11: 1122880, 2023.
Article in English | MEDLINE | ID: covidwho-2245414

ABSTRACT

In the present work, we report a computational study on some important chemical properties of the flavonoid isorhamnetin, used in traditional medicine in many countries. In the course of the study we determined the acid-base equilibria in aqueous solution, the possible reaction pathways with the •OOH radical and the corresponding kinetic constants, the complexing capacity of copper ions, and the reduction of these complexes by reducing agents such as superoxide and ascorbic anion by using density functional level of theory Density Functional Theory. Finally, the non-covalent inhibition ability of the SARS-CoV-2 main protease enzyme by isorhamnetin was examined by molecular dynamics (MD) and docking investigation.

2.
Frontiers in chemistry ; 11, 2023.
Article in English | EuropePMC | ID: covidwho-2235858

ABSTRACT

In the present work, we report a computational study on some important chemical properties of the flavonoid isorhamnetin, used in traditional medicine in many countries. In the course of the study we determined the acid-base equilibria in aqueous solution, the possible reaction pathways with the •OOH radical and the corresponding kinetic constants, the complexing capacity of copper ions, and the reduction of these complexes by reducing agents such as superoxide and ascorbic anion by using density functional level of theory Density Functional Theory. Finally, the non-covalent inhibition ability of the SARS-CoV-2 main protease enzyme by isorhamnetin was examined by molecular dynamics (MD) and docking investigation.

3.
J Chem Inf Model ; 62(20): 4916-4927, 2022 10 24.
Article in English | MEDLINE | ID: covidwho-2062143

ABSTRACT

The novel coronavirus SARS-CoV-2 is the causative agent of the COVID-19 outbreak that is affecting the entire planet. As the pandemic is still spreading worldwide, with multiple mutations of the virus, it is of interest and of help to employ computational methods for identifying potential inhibitors of the enzymes responsible for viral replication. Attractive antiviral nucleotide analogue RNA-dependent RNA polymerase (RdRp) chain terminator inhibitors are investigated with this purpose. This study, based on molecular dynamics (MD) simulations, addresses the important aspects of the incorporation of an endogenously synthesized nucleoside triphosphate, ddhCTP, in comparison with the natural nucleobase cytidine triphosphate (CTP) in RdRp. The ddhCTP species is the product of the viperin antiviral protein as part of the innate immune response. The absence of the ribose 3'-OH in ddhCTP could have important implications in its inhibitory mechanism of RdRp. We built an in silico model of the RNA strand embedded in RdRp using experimental methods, starting from the cryo-electron microscopy structure and exploiting the information obtained by spectrometry on the RNA sequence. We determined that the model was stable during the MD simulation time. The obtained results provide deeper insights into the incorporation of nucleoside triphosphates, whose molecular mechanism by the RdRp active site still remains elusive.


Subject(s)
COVID-19 , Cytidine Triphosphate , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Cryoelectron Microscopy , Cytidine Triphosphate/chemistry , Molecular Dynamics Simulation , Nucleosides , Nucleotides , Ribose , RNA, Viral , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism
4.
Int J Mol Sci ; 22(18)2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-1409705

ABSTRACT

The inhibition mechanism of the main protease (Mpro) of SARS-CoV-2 by ebselen (EBS) and its analog with a hydroxyl group at position 2 of the benzisoselenazol-3(2H)-one ring (EBS-OH) was studied by using a density functional level of theory. Preliminary molecular dynamics simulations on the apo form of Mpro were performed taking into account both the hydrogen donor and acceptor natures of the Nδ and Nε of His41, a member of the catalytic dyad. The potential energy surfaces for the formation of the Se-S covalent bond mediated by EBS and EBS-OH on Mpro are discussed in detail. The EBS-OH shows a distinctive behavior with respect to EBS in the formation of the noncovalent complex. Due to the presence of canonical H-bonds and noncanonical ones involving less electronegative atoms, such as sulfur and selenium, the influence on the energy barriers and reaction energy of the Minnesota hybrid meta-GGA functionals M06, M06-2X and M08HX, and the more recent range-separated hybrid functional wB97X were also considered. The knowledge of the inhibition mechanism of Mpro by the small protease inhibitors EBS or EBS-OH can enlarge the possibilities for designing more potent and selective inhibitor-based drugs to be used in combination with other antiviral therapies.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Isoindoles/pharmacology , Organoselenium Compounds/pharmacology , Protease Inhibitors/pharmacology , Antiviral Agents/therapeutic use , Binding Sites/drug effects , COVID-19/virology , Catalytic Domain/drug effects , Coronavirus 3C Proteases/metabolism , Drug Design , Humans , Isoindoles/chemistry , Isoindoles/therapeutic use , Molecular Docking Simulation , Molecular Dynamics Simulation , Organoselenium Compounds/chemistry , Organoselenium Compounds/therapeutic use , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL